To: Digi-Key	 Issue No.	:	ECJ08082	2901	
	Date of Issue	:	August 29		
	Classification		■ New	☐ Changed	***************************************

PRODUCT SPECIFICATION FOR APPROVAL

Product Description

: Multilayer Ceramic Chip Capacitors

Product Part Number

: ECJ1V60J106M (0603 / X6S / 6.3 V / 10 uF)

Customers Part Number:

Country of Origin

Japan

Applications

: Consumer Type Electric Equipment

Approval No	:		
Approval Date	:		
Excecuted by	:		
		(signature)	
Title	:		
Dept.	:		

Prepared by

: Engineering Section

Capacitor Business Unit

Phone: +81-123-23-8149

Panasonic Electronic Devices Co.,Ltd.

Fax : +81-123-22-4191

(Direct)

25.Kohata-nishinaka..Uji City, Kyoto, Japan

Contact Person

(Direct)

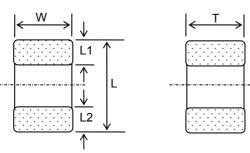
Phone: +81-774-32-1111(Representative)

Title

Title:

Authorized by

Manager of Engineering


If there is a question, please ask the engineering section about it directly.

CLASSIFICATION	SPECIFACATION	No. 151S-ECJ-KCS37E
SUBJECT	Multilayer Ceramic Chip Capacitors (EIA 0603)	PAGE 1 of 1
High C	apacitance (P/N:ECJ1V60J106M) Individual Specification	DATE Aug 28, 2008

1. Scope

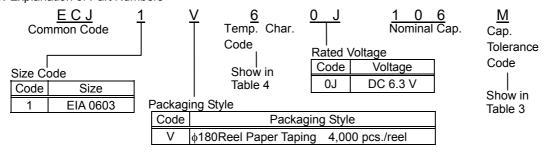
This specification applies to High Capacitance Multilayer Ceramic Chip Capacitors (EIA 0603), Temp. Char:X6S, Rated voltage DC6.3 V , Nominal Capacitance 10 μ F.

2. Style and Dimensions

	Table 1
Symbol	Dimensions(mm)
L	1.60 +/- 0.15
W	0.80 +/- 0.15
Т	0.80 +/- 0.15
L1,L2	0.3 +/- 0.2

3. Operating Temperature Range / Storage Temperature Range

Table 2


	_		
	Temperature Characteristics	Operating Temp. Range.	Storage Temperature Range
Class2	X6S	-55 to 105 °C	-55 to 105 °C

4. Individual Specification

Table 3

Part Number	Rated Voltage	Temp. Char.	Nominal Capacitance	Cap. Tolerance
ECJ1V60J106M	DC 6.3 V	X6S	10 μF	+/-20 %

5. Explanation of Part Numbers

6. Temperature Characteristics

Table 4

Temp. Char.	Capacitance	Change rate from Temperature	Measurement	Reference
Code	Temp. Char.	Without voltage application	Temperature Range	Temperature
6	X6S	+/-22 %	-55 to 105 °C	25 °C

7. Soldering method

Flow soldering shall not be applied.

/	APPROVAL	CHECK	DESIGN
Panasonic Electronic Devices Co., Ltd.	T.Kawamura	T.Shinriki	A.Konishi

CLASSIFICATION		SI	PECIFIC	ATION				No. 1519	S-ECJ-KGS37E
SUBJECT	Multilaye	er Ceram	ic Chip C	Capacito	rs (EIA 0	603)		PAGE	1 of 7
High Ca	pacitance	(P/N : E	CJ1V60	J106M)	Commor	Specific	cation	DATE	Aug 28, 2008
parts and (2) PBB and (3) All the ma Regulatio (4) This prod ous Subs (5) This prod	e-depleting materials u PBDE are i aterials used on of Manufa uct complie tances in el	substance used in this ntentionally d in this pro- acture and s with the ectrical an ted with ex	product. y excluded oduct are r Handling o RoHS, DIF d electroni kport proce	from mat egistered of Chemic RECTIVE 2 c equipme	erials used materials usal Substan 2002/95/E0 ent.	I in this prounder the Loces.	used in the man oduct. Law Concerning estriction of the s and regulatio	g Examina	tion and rtain Hazard-
information & safety becauseparate spe	was design communic se the trou cifications s ce / Aircraft	ation equipole or mali suitable for equipment	pment. Wh function of the applica t, Warning	en the foll this prod ation shou / Antitheft	lowing appused the lowing appused to the lower the lower appused to the	olications, preaten the panged. t, Medical	ic equipment so which are requi e lives and/or p equipment, Tra ng equipment,	ired highe roperties, nsport equ	r reliability and are examined, uipment (Motor
1- 3.Production far (1) Panasoni (2) Panasoni	c Electronic				EDTJ)				
2. Scope 2- 1.This specifica If there is a c the individua	lifference be	etween this					icitors (P/N : EC il specifications,		
2- 2.This product s	unication ed	quipment.							
ing the life er Adequate sa consideratior 1)Previou 2)Design product	nd. fety shall b ns. sly examine a protection	e ensured e how a sir n circuit as	especially ngle trouble Failsafe-c	for produce in this produced to a	uct design oduct affec avoid unsa	required a cts the end ife system	resulting from	safety wit	h the following
2- 3.This specifica Matsushita E				ents perta	ining to th	e trade ma	ade by and bet	ween you	company and
3. Part Number Co ECJ (1) 3- 1.Common Coc	1 (2) le (1)	V (3)	6 (4)	0J (5)	106 (6)	M (7)			
ECJ : Multila 3- 2.Size (2), Pac Shown in Ind	kaging Sty	les (3), Te		Characte	eristic (4),	Rated Vo	oltage (5), Capa	acitance 1	Folerance (7):
Note ;									
	Panasoni	c Electror	nic Device	es Co., Lt	d.		APPROVAL T.Kawamura	CHECK T.Shinrik	DESIGN ti A.Konishi

CLASSIFICATION	SPECIFICATION	No. 151S-ECJ-KGS37E
SUBJECT	Multilayer Ceramic Chip Capacitors (EIA 0603)	PAGE 2 of 7
High Ca	pacitance (P/N : ECJ1V60J106M) Common Specification	DATE Aug 28, 2008

3-3.Nominal Capacitance (6)

The Nominal Capacitance value is expressed in pico farads(pF) and is identified by a three-digit number; the first two digit represent significant figures and the last digit specifies the number of zero to follow.

Symbol (Ex.)	Nominal Cap.
105	1000000pF (1 μF)
475	4700000pF (4.7 μF)
106	10000000pF (10 μF)

4. Operating Temperature Range

Shown in Individual Specification.

5. Performance

The performance of the capacitor and its test condition shall be specified in Table 2.

5- 1.Pretreatment

Before test and measurements, the following pretreatment shall be applied when necessary.

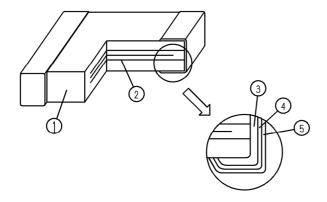
5-1-1. Heat Treatment

The capacitors shall be kept in a temperature of 150+0/-10°C for 1 hour and then shall be stored in a room temperature for 48±4 hours, before initial measurement.

5-1-2. Voltage Treatment

D.C. voltage shall be applied for 1 hour in the specified test condition and then shall be stored in a room temperature for 48 +/- 4 hours, before initial measurement.

6. Test


Unless otherwise specified, all test and measurements shall be made at a temperature of 15 to 35°C and at a relative humidity of 45 to 75%.

If results obtained are doubted a further test should be carried out at a temperature of 20±2°C and a relative humidity of 60 to 70%.

7. Structure

The structure shall be in a monolithic form as shown in Fig. 1.

Fig. 1 Table 1

No.	Name
1	Dielectric
2	Inner electrode
3	Substrate electrode
4	Intermediate electrode
(5)	External electrode

CLASSIFICATION	SPECIFICATION	No. 151S-ECJ-KGS37E
SUBJECT	Multilayer Ceramic Chip Capacitors (EIA 0603)	PAGE 3 of 7
High Ca	pacitance (P/N : ECJ1V60J106M) Common Specification	DATE Aug 28, 2008

Table 2 No Contents Performance Test Method There shall be no defects which affect With a magnifying glass (3 times). **Appearance** the life and use. With slide calipers and a micrometer. Shown in Individual Specification. 2 **Dimensions** 3 Dielectric Withstand-There shall be no dielectric break-Test voltage: 250 % of rated voltage Apply a DC voltage of the above value for 1 to ing voltage down or damage. 5 seconds. Charge/discharge current shall be within 50mA. Measuring voltage: Rated voltage Insulation 100/C $M\Omega$ min. 4 Resistance(I.R.) Measuring voltage time: 60+/-5s (C: Nominal Cap. in μF) Charge/discharge current shall be within 50mA. 5 Capacitance Shall be within the specified tolerance. Measuring Measuring 6 Dissipation Factor 0.15 max. Frequency Voltage (tan δ) 1 kHz+/-10 % 1.0+/-0.2 Vrms For the class2 Capacitors, perform the heat treatment in par. 5-1-1. Our Measurement instrument is shown in the Table 3. 7 Without Temp. Char. Measure the capacitance at each stage by Temperature Coefficient Voltage X6S: Within +/- 22 % changing the temperature in the order of step 1 Applito 4 shown in the table below. Calculate the cation rate of change regarding the capacitance at stage 3 as the reference. (Unit: °C) Temp. Stage Char. 2 3 4 5 25+/-2 | -55+/-3 | 25+/-2 | 105+/-2 | 25+/-2 X6S Measuring Measuring Frequency Voltage 1 kHz+/-10 % 0.50+/-0.05 Vrms 8 Adhesion The terminal electrode shall be free Solder the specimen to the testing jig shown in from peeling or signs of peeling. the figure., and apply a 5N force in the arrow direction for 10 seconds. Sample

(continue)

Material: Alumina board (95% min.) or glass

epoxy board.

Thickness: 1.0mm min.

Note;		

CLASSIFICATION	SPECIFICATION	No. 151S-ECJ-KGS37E
SUBJECT	Multilayer Ceramic Chip Capacitors (EIA 0603)	PAGE 4 of 7
High Ca	pacitance (P/N : ECJ1V60J106M) Common Specification	DATE Aug 28, 2008

٦	Га	h	le	-
	а	u		_

Table 2							
No	Contents Performance		Performance	Test Method			
9	Bending Strength	Appear- ance Capaci- tance		shall be no cracks and other nical damage. Change from the value before test. Within +/- 12.5 %	After soldering capacitor on the substrate 1 mm of bending shall be applied for 5 seconds. Bending speed: 1mm/s (shown in Fig. 3)		
10	Vibration Proof	Appear- ance Capaci- tance tan δ	mechar Shall be	hall be no cracks and other nical damage. e within the specified tolerance. eet the specified initial value.	Solder the specimen to the testing jig shown in Fig. 2. Apply a variable vibration of 1.5 mm total amplitude in the 10 to 55 to10Hz vibration frequency range swept in 1 min. in 3 mutually perpendicular directions for 2 hours each, a total of 6 hours.		
11	Resis- tance to Solder Heat	Appear- ance Capaci- tance tan δ I.R. With-stand voltage	mechar Temp. Char. X6S Shall m Shall m	chall be no cracks and other nical damage. Change from the value before test. Within +/- 7.5 % eet the specified initial value. eet the specified initial value. hall be no dielectric break-r damage.	Solder both method Preconditioning: Heat Temperature (See 5.1.1)/Class2 Solder temperature: 270+/-5 °C Dipping period: 3+/-0.5 s Preheat condition: Order Temp.(°C) Period(s) 1 80 to 100 120 to 180 2 150 to 200 120 to 180 Use solder H63A(JIS-Z-3282).For the flux, use rosin (JIS-K-5902) ethanol solution of a concentration of about 25% by weight. Use tweezers for the holder to dip the specimen. Recovery: 48+/-4 hours		
12 Solderability		of both	nan 95% of the soldered area terminal electrodes shall be d with fresh solder.	Solder temperature: 230+/-5 °C Dipping period: 4+/-1 s Dip the specimen in solder so that both terminal electrodes are completely submerged. Use solder H63A(JIS-Z-3282). For the flux use rosin (JIS-K-5902) of ethanol solution of a concentration of about 25 % by weight. Use tweezers for the holder to dip the specimen.			
L	1		1	(continue)			

(continue)

Ν	ote	
	0.0	

CLASSIFICATION	SPECIFICATION	No. 151S-ECJ-KGS37E
SUBJECT	Multilayer Ceramic Chip Capacitors (EIA 0603)	PAGE 5 of 7
High Ca	pacitance (P/N : ECJ1V60J106M) Common Specification	DATE Aug 28, 2008

Table 2 No Contents Performance Test Method 13 Temperature Appear-There shall be no cracks and other Solder the specimen to the testing jig shown mechanical damage. cycle ance in Fig. 2. Condition the specimen to each temperature from step 1 to 4 in this order for Capaci-Temp. Change from the value the period shown in the table below. Regardbefore test. tance Char. Within +/- 7.5 % ing this conditioning as one cycle, perform X6S 5 cycles continuously. Shall meet the specified initial value. $tan \delta$ Temperature Period I.R. Shall meet the specified initial value. Step (min.) (°C) With-There shall be no dielectric break-Minimum operation 30+/-3 stand down or damage. 1 temperature +/- 3 voltage 2 Room temperature 3 max. Maximum operation 3 30+/-3 temperature +/-5 4 Room temperature 3 max. For the class2 capacitors, perform the heat treatment in par. 5-1-1. Before the measurement after test, the specimen shall be left to stand at room temperature for the following period : 48+/-4 h 14 Moisture Appear-There shall be no cracks and other For the class2 capacitors, perform the heat Resistance ance mechanical damage. treatment in par. 5-1-1. Solder the specimen to the testing jig shown Capaci-Temp. Change from the value in Fig. 2. tance Char. before test X6S Within +/- 20 % Test temperature: 40+/-2 °C Relative humidity: 90 to 95 % 0.25 max. $tan \delta$ Test period : 500+24/0 h I.R. 10/C $M\Omega$ min. Before the measurement after test, the spe-(C : Nominal Cap. in μF) cimen shall be left to stand at room temperature for the following period: 48+/-4 h For the class2 capacitors, perform the heat 15 Moisture There shall be no cracks and other Appeartreatment in par. 5-1-2. Resistant ance Mechanical damage. Loading Solder the specimen to the testing jig shown Change from the value Capaci-Temp. in Fig. 2. tance Char. before test. Test temperature: 40+/-2 °C X6S Within +/- 20 % Relative humidity: 90 to 95 % 0.25 max. $tan \delta$ Applied voltage: Rated voltage (DC Voltage) I.R. 5/C M Ω min. Charge/discharge current: within 50 mA. (C: Nominal Cap. in μF) Test period: 500+24/0 h

(continue)

Before the measurement after test, the specimen shall be left to stand at room tempera-

ture for the following period:

48+/-4 h

N	0	te

CLASSIFICATION	SPECIFICATION	No. 151S-ECJ-KGS37E
SUBJECT	Multilayer Ceramic Chip Capacitors (EIA 0603)	PAGE 6 of 7
High Ca	pacitance (P/N : ECJ1V60J106M) Common Specification	DATE Aug 28, 2008

Table 2

$\overline{}$						
No	Conten	Contents		Performance	Test Method	
16	High Tem- perature Re- sistant Loading	Appear- ance Capaci-		hall be no cracks and other nical damage. Change from the value be-	For the class2 capacitors, perform the voltage treatment in par. 5-1-2. Solder the specimen to the testing jig shown	
	3	tance	Char. X6S	fore test. Within +/- 20 %	in Fig. 2.	
	ta		0.25 ma		Test temperature :	
		tan δ	10/C M		Max. Rated temp. +/-3°C Applied voltage : Rated voltage (DC Voltage) Charge/discharge current : within 50 mA. Test period : 1000+48/0 h	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					Before the measurement after test, the specimen shall be left to stand at room temperature for the following period : 48+/-4 h	

When uncertainty occurs in the weather resistance characteristic tests (temperature cycle, moisture resistance, moisture resistant loading, high temperature resistant loading), the same tests shall be performed for the capacitor itself.

Table 3

	Our Standard Measuring Instrument
Measuring Instrument	4278A 1kHz/1MHz Capacitance Meter (Agilent Technologies)
Measuring Mode	Parallel Mode
Recommended Measuring Jig	16034E Test Fixture (Agilent Technologies)

For High Cap Type, signal voltage may be unable to be applied to depending on conditions of measuring instruments. We would appreciate it if you would confirm whether High Cap Type is under the measurable environment or not by checking that the fixed signal voltage is applied or not. (For example, ALC function is ON, HPA is expanded.)

Note ;	_	 	_

CLASSIFICATION SPECIFICATION

SUBJECT Multilayer Ceramic Chip Capacitors (EIA 0603)

High Capacitance (P/N : ECJ1V60J106M) Common Specification

No.
151S-ECJ-KGS37E

PAGE
7 of 7

DATE Aug 28, 2008

Fig. 2 Testing jig

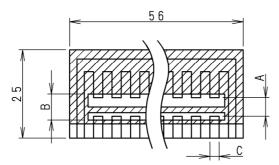
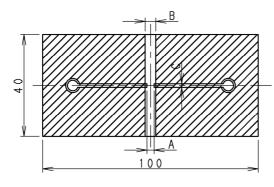


Table 4
Size(EIA) A B C
0603 1.0 3.0 1.2

Unit: mm

Material: Glass epoxy board


Thickness: 1.6 mm

:Copper foil (0.035 mm thick)

:Solder resist

Fig. 3 Testing jig

Table 5

 Size(EIA)
 A
 B
 C

 0603
 1.0
 3.0
 1.2

Unit : mm

Material: Glass epoxy board

Thickness: 1.6 mm

:Copper foil (0.035 mm thick)

:Solder resist

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS018E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 1 of 9
	Common Specification (Precautions for Use)	DATE Apr. 1, 2008

Precautions for Use

The Multilayer Ceramic Chip Capacitors (hereafter referred to as "Capacitors") may fail in a short circuit mode in an open-circuit mode when subjected to severe conditions of electrical, environmental and/or mechanical stress beyond the specified "Rating and specified "Conditions" in the Specifications, resulting in burn out, flaming or glowing in the worst case. The following "Precautions for Safety" and "Application Notes" shall be taken in your major consideration for use.

2. Operating Conditions and Circuit Design

2- 1. Circuit Design

2-1-1. Operating Temperature and Storage Temperature

The specified "Operating Temperature Range" in the Specifications is the absolute maximum and minimum temperature rating. Every circuit mounting a Capacitor shall be operated within the specified "Operating Temperature Range". The Capacitors mounted on PCB shall be stored without operating within the specified "Storage Temperature Range" in the Specifications.

2-1-2. Design of Voltage application

The Capacitors shall not be operated exceeding the specified "Rated Voltage" in the Specification.

If voltage ratings are exceeded, the Capacitors could result in failure or damage. In case of application of DC and AC voltages to the Capacitors, the designed peak voltage shall be within the specified "Rated Voltage". In case of AC of pulse voltage, the peak voltage shall be within the specified "Rated Voltage". If high frequency voltage or fast rising pulse voltage is applied continuously even within the "Rated Voltage", contact our engineering section before use. Such continuous application affects the life of the Capacitors.

2-1-3. Working Current

It is recommended to equip the Capacitors with protection circuits for safety reasons, as should the Capacitors short circuit with voltages such as secondary voltage, there will be a serious risk that the Capacitors might self-heat or circuit boards might burn out.

2-1-4. Self-Heating of Capacitors

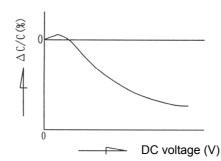
When the Capacitors self-heat as a result of using AC or pulse voltage circuits and operate at room temperatures (25deg.C max.), make sure that the Capacitors' surface temperature does not exceed the ambient temperature plus 20 deg.C (max.), or the maximum operating temperature specified in product specification for approval. Also, the temperature of the Capacitors' surface which varies with circuit types used should be measured under the operational mode of devices mounted on by the Capacitors.

2-1-5. Restriction on Environmental Conditions

The Capacitors shall not be operated and / or stored under the following environmental conditions.

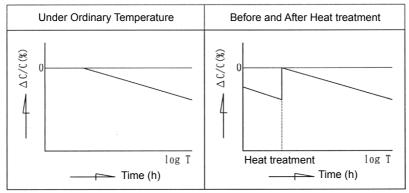
- (1) Environmental conditions
 - (a) To be exposed directly to water or salt water
 - (b) To be dew formation
 - (c) Under conditions of corrosive gases such as hydrogen sulfide, sulfurous acid, chlorine and ammonia
- (2) Under severe conditions of vibration or impact beyond the specified conditions in the Specifications

2-1-6. DC voltage characteristics


The capacitance of Class 2 Capacitors has voltage dependency, contributing to big capacitance fluctuations in high DC voltage application. To secure specified capacitance, the following should be confirmed.

- (1) That the capacitance fluctuations caused by voltage application are within the capacitance range of a circuit used, or if the capacitance range of a circuit used is broad enough to maintain the Capacitors' functions.
- (2) DC voltage characteristics demonstrate, even if applied voltage is under the rated voltage, capacitance change rate increases with higher voltage (Capacitance down). Accordingly, when the Capacitors are used for circuits with narrow capacitance allowable range such as time constant circuits, we recommend to apply lower voltage upon due consideration on capacitance aging in addition to the above.

Note ;				
		APPROVAL	CHECK	DESIGN
Pa	anasonic Electronic Devices Co., Ltd.	T.Kawamura	T.Shinriki	A.Konishi


CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS018E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 2 of 9
	Common Specification (Precautions for Use)	DATE Apr. 1, 2008

Capacitance change vs. DC voltage

2-1-7. Capacitance aging

The ceramic dielectrics of the Capacitors (Class 2) have capacitance aging. Accordingly, when the Capacitors are used for the circuits, which require a narrow capacitance allowable range, such as time constant circuits, pay due consideration to capacitance aging for use.

2-1-8. Piezoelectricity

Dielectrics used for the Capacitors (Class 2) may cause the following Piezoelectricity (or Electrostriction).

(1) If the signal of a specific frequency is applied to the Capacitors, electric and acoustic noise may be generated by resonating the characteristic frequency which is determined by the dimensions of the Capacitor.

As a measure to prevent this phenomenon, changing the size of the Capacitor is effective to change its resonance frequency.

Also there is another measure changing the materials of the Capacitors to the Low-loss type, which has no (or less) piezoelectricity, or to Class1.

which has no (or less) piezoelectricity, or to Class1 is also available.

- (2) Vibration or impact applied to the Capacitors may cause noise because mechanical force is converted to electrical signals (Especially, application to around the amplifier unit) .
 - As a measure to prevent this phenomenon, changing the materials of the Capacitor to the Low-loss type, which has no (or less) piezoelectricity, or to Class1 is also available.
- (3) Even if a whining sound is generated, there is no problem in product performance and reliability, however, check the worrisome phenomenon which may generate noise in your equipment.

As a measure to prevent this phenomenon, changing to the Capacitor different in characteristics, size and shape as shown in the (1), (2) above is effective.

As the other measures, changing the mounting direction of the Capacitors to bring under control the resonance with equipment bodies such as printed circuit board, or the Capacitors are fixed with equipment bodies such as printed circuit board by adhesive may be effective.

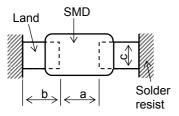
2- 2.Design of Printed Circuit Board

2-2-1. Selection of Printed Circuit Board

When the Capacitors are mounted and soldered on an Aluminum Substrate, the substrate has influences on Capacitor's reliabilities against "Temperature Cycles" and "Heat shock" because of difference in thermal expansion coefficient between them.

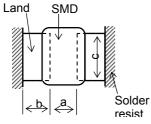
It shall be carefully confirmed that the actual board applied does not deteriorate the characteristics of the Capacitors.

Note:			

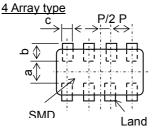

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS018E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 3 of 9
	Common Specification (Precautions for Use)	DATE Apr. 1, 2008

2-2-2. Design of Land Pattern

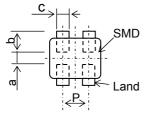
(1) Recommended land dimensions are shown below for proper amount of solder to prevent cracking at the time of excessive stress to the Capacitors due to increased amount of solder.


{ Recommended land dimensions (Ex.) }

[For High Capacitance, General Electronic Equipment, Low ProfileType, 100V·200V series, 630V series, High-Q Capacitors]

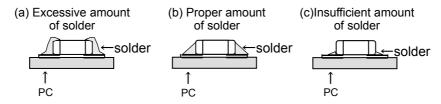

						Unit in mm
Size	Con	ponent	Dimension		b	
(EIA)	L	W	T	а	b	С
0201	0.6	0.3	0.3	0.2 to 0.3	0.25 to0.30	0.2 to 0.3
0402	1.0	0.5	0.5	0.4 to 0.5	0.4 to 0.5	0.4 to 0.5
0603	1.6	8.0	0.8	0.8 to 1.0	0.6 to 0.8	0.6 to 0.8
0805	2.0	1.25	0.6 to 1.25	0.8 to 1.2	0.8 to 1.0	0.8 to 1.0
1206	3.2	1.6	0.6 to 1.6	1.8 to 2.2	1.0 to 1.2	1.0 to 1.3
1210	3.2	2.5	0.8 to 2.5	1.8 to 2.2	1.0 to 1.2	1.8 to 2.3

[Wide-width Type]


						Unit in mm
Size	Compo	onent Di	mension	_	L	_
(EIA)	L	W	Т	а	b	С
0508	1.25	2.0	0.85	0.5 to 0.7	0.5 to 0.6	1.4 to 1.9
0612	1.6	3.2	0.85	0.8 to 1.0	0.6 to 0.7	2.5 to 3.0

[Array Type]

							Unit in mm
Size	Compo	Component Dimension			b		Р
(EIA)	L	W	Т	а	D	С	F
0805	2.0	1.25	0.85	0.55	0.5	0.2	0.4
4 Array	2.0	1.23	0.65	to 0.75	to 0.6	to 0.3	to 0.6
1206	3.2	1.6	0.85	0.9	0.7	0.35	0.7
4 Array	3.2	1.0	0.00	to 1.1	to 0.9	to 0.45	to 0.9

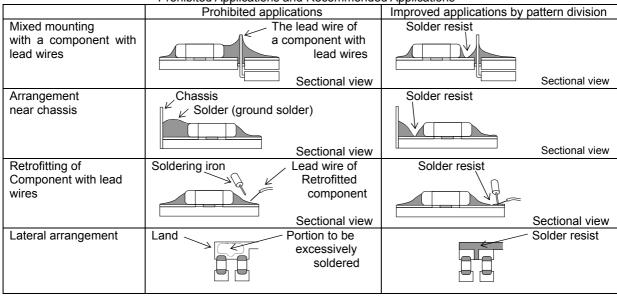

2 Array type

						U	Init in mm
Size Component Dimension			а	b	С	Р	
(EIA)	L	W	T				
			0.6	0.3	0.45	0.3	0.54
0504	1.37	1.0	0.6	to 0.4	to 0.55	to 0.4	to 0.74
2 Array	1.57	1.0	0.8	0.3	0.4	0.46	0.71
			0.0	to 0.6	to 0.7	to 0.56	to 0.91

(2) The size of lands shall be designed to be equal between the right and left sides. If the amount of solder on the right land is different from that on the left land, the component may be cracked by stress to one side of the component since the side with a larger amount of solder solidifies later at the time of cooling.

Recommended Amount of Solder

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS018E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 4 of 9
	Common Specification (Precautions for Use)	DATE Apr. 1, 2008


2-2-3. Utilization of Solder Resist

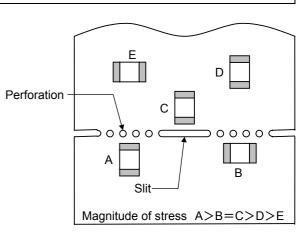
The application of solder resist is effective in preventing solder bridges and controlling the amount of solder on PC boards.

- (1) Solder resist shall be utilized to equalize the amounts of solder on both sides.
- (2) Solder resist shall be used to divide the pattern for the following cases;
 - ·Components are arranged closely.
- •The Capacitor is mounted near a component with lead wires.
- ·The Capacitor is placed near a chassis.

See the table below.

Prohibited Applications and Recommended Applications

2-2-4. Component Layout


The Capacitors / components shall be placed on the PC board such that both electrodes are subjected to uniform stresses, or to position the component electrodes at right angles to the grid glove or bending line. This should be done to avoid cracking the Capacitors from bending the PC board after or during placing/mounting on the PC board.

(1) To minimize mechanical stress caused by warp or bending of a PC board, please follow the recommended Capacitor layout below.

	Prohibited layout	Recommended layout
Warp of Circuit board		Lay out the Capacitor sideways against the stressing direction

- (2) The following drawing is for your reference since mechanical stress near the dividing/breaking position of a PC board varies depending on the mounting position of the Capacitors.
- (3) The magnitude of mechanical stress applied to the Capacitors when the circuit board is divided is in the order of push back < slit < V-groove < perforation.

Also take into account the layout of the Capacitors and the dividing/breaking method.

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS018E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 5 of 9
	Common Specification (Precautions for Use)	DATE Apr. 1, 2008

2-2-5. Mounting Density and Spaces

If components are arranged in too narrow spaces, the components are affected by Solder bridges and Solder balls. Each space between components should be carefully determined.

3. Precautions for Assembly

3-1.Storage

- (1) The Capacitors before mounting on PCB shall be stored between 5 40°C and 20 70% RH, not under severe conditions of high temperature and humidity.
- (2) If stored in a place that is humid, dusty, or contains corrosive gasses (hydrogen sulfide, sulfurous acid, hydrogen chloride and ammonia, etc.), the solderability of terminal electrodes may deteriorate. In addition, storage in a place subjected to heating and/or exposed to direct sunlight will cause deformed tapes and reels. and component sticking to tapes, both of which can result in mounting problems.
- (3) Do not store components longer than 6 months. Check the solderability of products that have been stored for more than 6 months before use.
- (4) The Capacitors of high dielectric constant series (Class 2, Characteristic B,X7R,X5R and F,Y5V) change in capacitance with the passage of time, "Capacitance aging", due to the inherent characteristics of ceramic dielectric materials. The changed capacitance can be recovered by heat treatment to each initial value at the time of shipping. (See 2. Operating Condition and Circuit Design, 2-1-7. Capacitance aging)
- (5) When the initial capacitance is measured, the Capacitors shall be heat-treated at 150+0/-10°C for 1 hour and then subjected to ordinary temperature and humidity for 48±4 hours before measuring the initial value.

3- 2. Chip Mounting Consideration

- (1) When mounting the Capacitors/components on a PC board, the capacitor bodies shall be free from excessive impact loads such as mechanical impact or stress in the positioning, pushing force and displacement of vacuum nozzles at the time of mounting.
- (2) Maintenance and inspections for Chip Mounter must be performed regularly.
- (3) If the bottom dead center of the vacuum nozzle is too low, the Capacitor is cracked by an excessive force at the time of mounting.

The following precautions and recommendations are for your reference in use.

- (a) Set and adjust the bottom dead center of the vacuum nozzles to the upper surface of the PC board after correcting the warp of the PC board.
- (b) Set the pushing force of the vacuum nozzle at the time of mounting to 1 to 3 N in static load.
- (c) For double surface mounting, apply a supporting pin on the rear surface of the PC board to suppress the bending of the PC board in order to minimize the impact of the vacuum nozzles. The typical examples are shown in the table below.
- (d) Adjust the vacuum nozzles so that their bottom dead center at the time of mounting is not too low.
- (4) The closing dimensions of positioning chucks shall be controlled and the maintenance, checks and replacement of positioning chucks shall be regularly performed to prevent chipping or cracking of the Capacitors caused by mechanical impact at the time of positioning due to worn positioning chucks.
- (5) Maximum stroke of the nozzle shall be adjusted so that the maximum bending of PC board does not exceed 0.5mm at 90mm span. The PC board shall be supported by means of adequate supporting pins.

	Prohibited mounting	Recommended mounting
Single surface mounting	Crack	The supporting pin must not be necessarily positioned beneath the capacitor.
Double surface mounting	Separation Crack	Supporting pin

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS018E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 6 of 9
	Common Specification (Precautions for Use)	DATE Apr. 1, 2008

3- 3. Selection of Soldering Flux

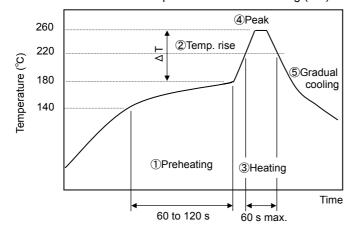
Soldering flux may seriously affect the performance of the Capacitors. The following shall be confirmed before use.

- (1) The soldering flux should have a halogen based content of 0.1 wt. % (converted to chlorine) or below. Do not use soldering flux with strong acid.
- (2) When applying water-soluble soldering flux, wash the Capacitors sufficiently because the soldering flux residue on the surface of PC boards may deteriorate the insulation resistance on the Capacitor's surface.

3-4.Soldering

3-4-1. Reflow soldering

The reflow soldering temperature conditions are each temperature curves of Preheating, Temp. rise, Heating, Peak and Gradual cooling. Large temperature difference caused by rapid heat application to the Capacitors may lead to excessive thermal stresses, contributing to the thermal cracks. The Preheating temperature requires controlling with great care so that tombstone phenomenon may be prevented.


	Temperature	Period or Speed
①Preheating	140 to 180 ℃	60 to 120 s
②Temp. rise	Preheating temp. to Peak temp.	2 to 5 °C/s
3Heating	220 ℃ min.	60 s max.
<pre>④Peak</pre>	260 °C max.	10 s max.
⑤Gradual cooling	Peak temp. to 140 $^{\circ}\!$	1 to 4 ℃/s

The rapid cooling (forced cooling) during Gradual cooling part should be avoided, because this may cause defects such as the thermal cracks, etc.

When the Capacitors are immersed into a cleaning solvent, confirm that the surface temperature of the devices does not exceed 100°C.

Performing reflow soldering twice under the conditions shown in the figure above [Recommended profile of Reflow soldering (EX)] will not cause any problems. However, pay attention to the possible warp and bending of the PC board.

Recommended profile of Reflow soldering (Ex.)

⟨ Allowable temperature difference ∆T⟩

Size	Temp. Tol.
0201 to 1206	ΛΤ≤ 150 °C
0508, 0612, 0504	Δ1 ≦ 150 C
1210	ΔT≦ 130 °C

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS018E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 7 of 9
	Common Specification (Precautions for Use)	DATE Apr. 1, 2008

3-4-2. Hand soldering

Hand soldering typically causes significant temperature change, which may induce excessive thermal stresses inside the Capacitors, resulting in the thermal cracks, etc.

In order to prevent any defects, the following should be observed;

- •The temperature of the soldering tips should be controlled with special care.
- •The direct contact of soldering tips with the Capacitors and/or terminal electrodes should be avoided.
- ·Dismounted Capacitors shall not be reused.

(1) Condition 1 (with preheating)

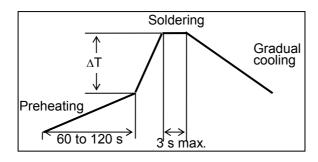
(a) Soldering:

 ϕ 1.0mm or below Thread eutectic solder with soldering flux* in the core.

*Rosin-based and non-activated flux is recommended.

(b) Preheating:

The Capacitors shall be preheated so that the "Temperature Gradient" between the devices and the tip of soldering iron is 150°C or below.


(c) Temperature of Iron tip: 300°C max.

(The required amount of solder shall be melted in advance on the soldering tip.)

(d) Gradual Cooling:

After soldering, the Capacitors shall be cooled gradually at room ambient temperature.

Recommended profile of Hand Soldering [Ex.]

⟨Allowable temperature difference △T⟩		
Size Temp. Tol.		
0201 to 1206	ΛΤ≤ 150 °C	
0508, 0612, 0504	Δ1 ≅ 150 C	
1210	ΔT≦ 130 °C	

(2) Condition 2 (without preheating)

Hand soldering can be performed without preheating, by following the conditions below:

- (a) Soldering iron tip shall never directly touch the ceramic dielectrics and terminal electrodes of the Capacitors.
- (b) The lands are sufficiently preheated with a soldering iron tip before sliding the soldering iron tip to the terminal electrodes of the Capacitor for soldering.

Conditions of Hand soldering without preheating

	Condition	
Chip size	0201 to 0805, 0508, 0504	1206 to 1210, 0612
Temperature of soldering iron	270 °C max.	250 °C max.
Wattage	20W max.	
Shape of soldering iron tip		nax.
Soldering time with soldering iron	3s max.	

3-5.Post Soldering Cleaning

3-5-1. Cleaning solvent

Soldering flux residue may remain on the PC board if cleaned with an inappropriate solvent. This may deteriorate the electrical characteristics and reliability of the Capacitors.

3-5-2. Cleaning conditions

Inappropriate cleaning conditions such as insufficient cleaning or excessive cleaning may impair the electrical characteristics and reliability of the Capacitors.

- (1) Insufficient cleaning can lead to:
 - (a) The halogen substance in the residues of the soldering flux to cause the metal of terminal electrodes to corrode.
 - (b) The halogen substance in the residue of the soldering flux on the surface of the Capacitors may change resistance values.

|--|

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS018E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 8 of 9
	Common Specification (Precautions for Use)	DATE Apr. 1, 2008

(c) Water-soluble soldering flux may have more remarkable tendencies of (a) and (b) above compared to those of rosin soldering flux.

(2) Excessive cleaning can lead to:

(a) Overuse of ultrasonic cleaning may deteriorate the strength of the terminal electrodes or cause cracking in the solder and/or ceramic bodies of the Capacitors due to vibration of the PC boards.

Please follow these conditions for Ultrasonic cleaning:

Ultrasonic wave output : 20 W/L max.
Ultrasonic wave frequency : 40 kHz max.
Ultrasonic wave cleaning time : 5 minutes max.

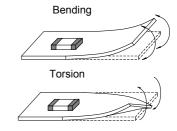
3-5-3. Contamination of Cleaning solvent

Cleaning with contaminated cleaning solvent may cause the same results as insufficient cleaning due to the high density of liberated halogen.

3- 6.Inspection Process

When mounted PC boards are inspected with measuring terminal pins, abnormal and excess mechanical stress shall not be applied to the PC board or mounted components, to prevent failure or damage to the devices.

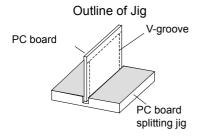
- (1) Mounted PC boards shall be supported by an adequate number of supporting pins with bend settings of 90 mm span 0.5mm max.
- (2) Confirm that the measuring pins have the right tip shape, are equal in height and are set in the correct positions. The following figures are for your reference to avoid bending the PC board.

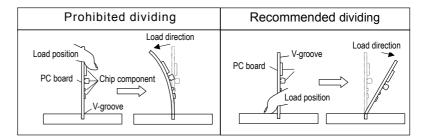

	Prohibited setting	Recommended setting
Bending of PC board	Check pin Separated	Check pin Supporting pin

3-7.Protective Coating

When the surface of a PC board on which the Capacitors have been mounted is coated with resin to protect against moisture and dust, it shall be confirmed that the protective coating which is corrosive or chemically active is not used, in order that the reliability of the Capacitors in the actual equipment may not be influenced. Coating materials that expand or shrink also may lead to damage to the Capacitor during the curing process.

3-8.Dividing/Breaking of PC Boards


- (1) Abnormal and excessive mechanical stress such as bending or torsion shown below can cause cracking in the Capacitors.
- (2) Dividing/Breaking of the PC boards shall be done carefully at moderate speed by using a jig or apparatus to prevent the Capacitors on the boards from mechanical damage.



(3) Examples of PCB dividing/breaking jigs:

When PC boards are broken or divided, loading points should be close to the jig to minimize the extent of the bending

Also, planes with no parts mounted on should be used as plane of loading, which generates a compressive stress on the mounted plane, in order to prevent tensile stress induced by the bending, which may cause cracks of the Capacitors or other parts mounted on the PC boards.

CLASSIFICATION	SPECIFICATIONS	No. 151S-ECJ-SS018E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 9 of 9
	Common Specification (Precautions for Use)	DATE Apr. 1, 2008
The Caparif dropped Never use impaired at (2) When han the Capace When more between the cracking resistance. 4. Other For special mountifications.	citors shall be free from any excessive mechanical impact. Citor body is made of ceramics and may be damaged or cracked	Crack Floor Crack Mounted PCB
Ceramic Industries	nical Report EIAJ RCR-2335 Caution Guide Line for Operation Capacitors for Electronic Equipment by Japan Electronics and Info Association (March 2002 issued) above technical report for details.	

CLASSFICAT	SPECIFICATIONS	No. 151S-ECJ-SV045E
SUBJECT	Multilayer Ceramic Chip Capacitor (Size:0201 to 1812)	PAGE 1 of 6
Packaging Specifications		DATE Sep. 13, 2006

1. Scope

This specification applies to taped and reeled packing for Multilayer ceramic chip capacitors Size: EIA 0201, EIA 0402, EIA 0603, EIA 1206, EIA 1210 and EIA 1812.

2. Applicable Standards

EIAJ (Electric Industries Association of Japan) Standard EIAJ RC-1009B

JIS (Japanese Industrial Standard) Standard JIS C 0806

3. Packing Specification

3- 1.Structure and Dimensions

Paper taping packaging is carried out according the following diagram

1) Carrier tape : Shown in Fig. 6. : Shown in Fig. 7.

3) Packaging : We shall pack suitably in order prevent damage during transportation or storage.

3- 2. Packing Quantity

		Carrier-Tape		Quantity (pcs./reel)			
Size	Thickness of Capacitor(mm)		Taning	<i>φ</i> 180mm Reel		<i>φ</i> 330mm Reel	
		Material	Taping Pitch	Packaging Code	Quantity	Packaging Code	Quantity
0201	0.30 +/- 0.03	Paper Tape (Press Carrier Tape)	2mm	Е	15000		
0402	0.50 +/- 0.05		2mm	E	10000	W	50000
0603	0.8 +/- 0.1 0.80 +/- 0.15	Paper Tape (Punch Carrier Tape)	4mm	V	4000	Z	10000
	0.6 +/- 0.1	(Funch Camer Tape)	4mm	V	5000	Z	20000
	0.85 +/- 0.10		4mm	V	4000	Z	10000
0805	1.25 +/- 0.10 1.25 +/- 0.15 1.25 +/- 0.20	Embossed Tape	4mm	F	3000		
	0.6 +/- 0.1	Paper Tape	4mm	V	5000	Z	20000
1206	0.85 +/- 0.10	(Punch Carrier Tape)	4mm	V	4000	Z	10000
1200	1.15 +/- 0.10		4mm	F	3000		
	1.6 +/- 0.2		4mm	Υ	2000		
1210	2.0 +/- 0.2	Embossed Tape	4mm	Υ	2000		
1210	2.5 +/- 0.3		4mm	Υ	1000		
1812	2.5 +/- 0.3		8mm	Y	500		

Explanation of Part Numbers (Example)

ECJ 1 $\frac{\mathbf{V}}{\mathbf{I}}$ B 1C 104 K Packaging Code

3- 3. Marking on the Reel

The following items are described in the side of a reel in English at least.

- 1) Part Number
- 2) Quantity
- 3) Lot Number
- 4) Place of origin

Note ;			
	APPROVAL	CHECK	DESIGN
Panasonic Electronic Devices Co., Ltd.	Y.Sakaguchi	T.Kawamura	A.Konishi

CLASSFICA	TION SPECIFICATIONS	No. 151S-ECJ-SV045E
SUBJECT	Multilayer Ceramic Chip Capacitor (Size:0201 to 1812)	PAGE 2 of 6
	Packaging Specifications	DATE Sep. 13, 2006

3-4. Structure of Taping

1) The direction of winding of taping on the reel shall be in accordance with the following diagram.

Fig. 1 Paper Tape

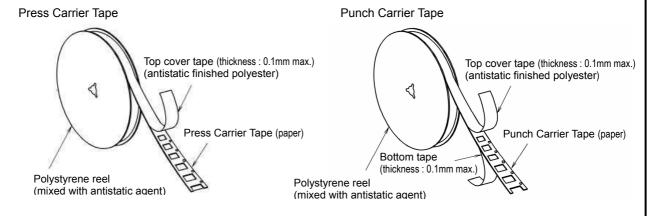
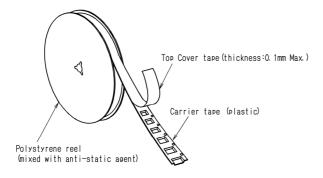
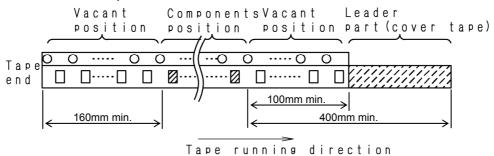
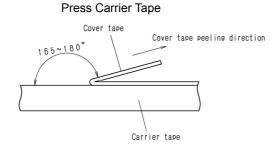




Fig. 2 Embossed Tape

2) The specification of the leader and empty portion shall be in accordance with the following diagram.

Fig. 3 Leader Part and Taped End



CLASSFICAT	SPECIFICATIONS	No. 151S-ECJ-SV045E
SUBJECT	Multilayer Ceramic Chip Capacitor (Size:0201 to 1812)	PAGE 3 of 6
	Packaging Specifications	DATE Sep. 13, 2006

4. Efficiency

- 4- 1.Breakage strength of the tape: 10N or more.
- 4- 2.Peel strength of the cover tape (refer to the Fig.4, 5).1) Peel angle: 165 to 180 degree from the tape adhesive face.
 - 2) Peel velocity: 300mm per min.
 - 3) Peel strength: 0.1 to 0.7N

Fig. 4 Paper Tape

Punch Carrier Tape

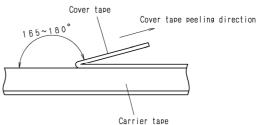
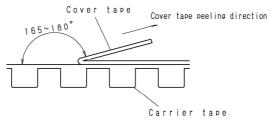
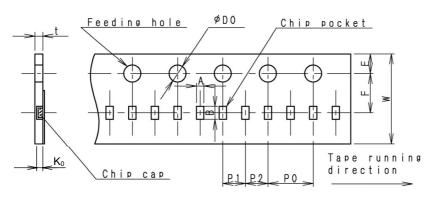



Fig. 5 Embossed Tape

4-3.Barrs on tape

There shall be no barrs preventing suction when products are taken out.

4-4. Missing of products

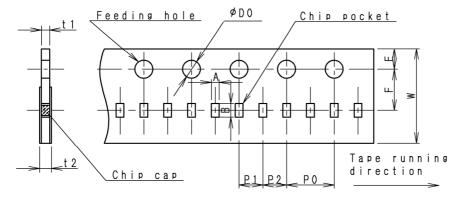

The missing of products shall be 0.1% or less per reel and there shall be no continuous missing of products.

4-5.Adherence to the tape

Products shall not be stuck to the cover tape or bottom tape.

Fig. 6 Carrier Tape Dimension

(a) Size 0201 : 2mm pitch for Paper tape (Press Carrier Tape)

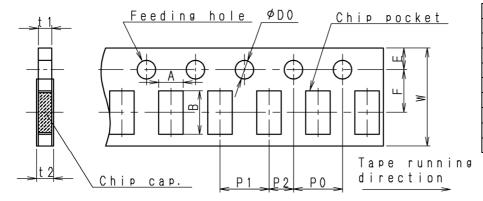

Code Dimension			
	Dimension		
W 8.0 ± 0.2	2		
F 3.50 ± 0.0)5		
E 1.75 ± 0.1	0		
P_1 2.00 ± 0.0)5		
P_2 2.00 ± 0.0)5		
P_0 4.0 ± 0.1			
φ D ₀ 1.5 +0.1/0			
t 0.55 max.	0.55 max.		
K_0 0.36 ± 0.0	3		

Unit: mm

Size Code	0201
Α	0.36 +/- 0.03
В	0.66 +/- 0.03

CLASSFICATION SPECIFICATIONS SUBJECT Multilayer Ceramic Chip Capacitor (Size:0201 to 1812) Page 4 of 6 Packaging Specifications PAGE 4 of 6 DATE Sep. 13, 2006

(b) Size 0402 : 2mm pitch for Paper tape (Punch Carrier Tape)

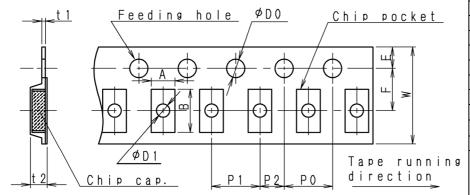


Code	Dimension		
W	8.0 +/- 0.2		
F	3.50 +/- 0.05		
Е	1.75 +/- 0.10		
P ₁	2.00 +/- 0.05		
P ₂	2.00 +/- 0.05		
P ₀	4.0 +/- 0.1		
ϕD_0	1.5 +0.1/0		
t ₁	0.7 max.		
t_2	1.0 max.		

Unit: mm

Size Code	0402	
Α	0.62 +/- 0.05	
В	1.12 +/- 0.05	

(c) Size 0603, 0805 and 1206 : 4mm pitch for Paper tape (Punch Carrier Tape)

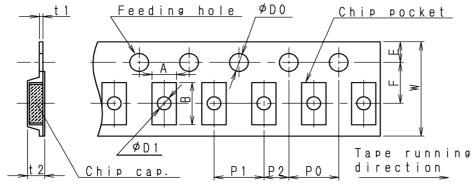

Code	Dimension
W	8.0 +/- 0.2
F	3.50 +/- 0.05
Е	1.75 +/- 0.10
P ₁	4.0 +/- 0.1
P_2	2.00 +/- 0.05
P ₀	4.0 +/- 0.1
ϕD_0	1.5 +0.1/0
t_1	1.2 max.
t_2	1.5 max.

Unit : mm

Size Code	0603	0805	1206
Α	1.05 +/- 0.10	1.65 +/- 0.20	2.0 +/- 0.2
В	1.85 +/- 0.10	2.4 +/- 0.2	3.6 +/- 0.2

CLASSFICA	SPECIFICATIONS	No. 151	S-ECJ	-SV	045E
SUBJECT	Multilayer Ceramic Chip Capacitor (Size:0201 to 1812)	PAGE	5	of	6
	Packaging Specifications	DATE	Sep.	13,	2006

(d) Size 0805, 1206 and 1210: 4mm pitch for Embossed tape



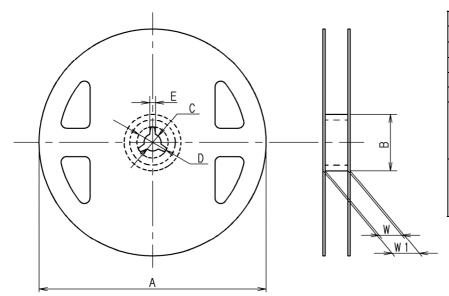
Code	Dimension			
W	8.0 +/- 0.2			
F	3.50 +/- 0.05			
Е	1.75 +/-	0.10		
P ₁	4.0 +/-	0.1		
P_2	2.00 +/-	0.05		
P ₀	4.0 +/- 0.1			
ϕD_0	1.5 +0.1/0			
ϕD_1	1.1+/- (0.1		
t ₁	0.6 ma	ax.		
	Size0805	2.5		
+.	Size1206	max.		
t ₂	Size1210	3.5		
	31261210	max.		
Linit: mm				

Unit : mm

Size Code	0805	1206	1210
Α	1.55 +/- 0.20	1.9 +/- 0.2	2.8 +/- 0.2
В	2.35 +/- 0.20	3.5 +/- 0.2	3.5 +/- 0.2

(e) Size: 1812: 8mm pitch for Embossed tape

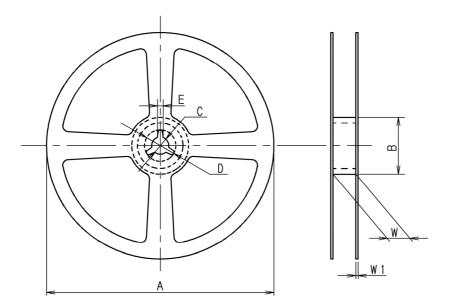
Code	Dimension
W	12.0 +/- 0.3
F	5.50 +/- 0.05
Е	1.75 +/- 0.10
P ₁	8.0 +/- 0.1
P_2	2.00 +/- 0.05
P ₀	4.0 +/- 0.1
ϕD_0	1.5 +0.1/0
ϕD_1	1.6 +/- 0.2
t ₁	0.6 max.
t ₂	4.0max.


Unit : mm

Size Code	1812	
Α	3.6 +/- 0.3	
В	4.9 +/- 0.3	

CLASSFICA	SPECIFICATIONS	No. 1519	S-ECJ-	-SV0)45E
SUBJECT	Multilayer Ceramic Chip Capacitor (Size:0201 to 1812)	PAGE	6	of	6
Packaging Specifications		DATE	Sep.	13,	2006

Fig. 7 Reel Dimension


(a) ϕ 180mm Reel (Standard Reel)

Code	Dimension	
Α	φ180+0/-3.0	
В	φ60 +/- 0.5	
С	13.0 +/- 0.5	
D	21.0 +/- 0.8	
Е	2.0 +/- 0.5	
W	Tape width	9.0
	: 8 mm	+/- 0.3
	Tape width	13.0
	: 12 mm	+/- 0.3
W_1	Tape width	11.4
	: 8 mm	+/- 1.0
	Tape width	15.4
	: 12 mm	+/- 1.0
		1.1-24

Unit: mm

(b) ϕ 330mm Reel (Large size Reel)

Code	Dimension
Α	φ330 +/- 5
В	<i>∲</i> 50 min.
С	13.0 +/- 0.5
D	20 min.
Е	2.0 +/- 0.5
W	9.5 +/- 1.0
W_1	2.0 +/- 0.5
	11.4

Unit: mm