

Absolute Maximum Ratings(Note 2)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrica Characteristics tables are not guaranteed at the absolute maximum ratings The "Recommended Operating Conditions" table will define the conditions or actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.75	5	5.25	V
V_{IH}	HIGH Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage				0.8	V
I_{OH}	HIGH Level Output Current				-0.4	mA
${ }_{\text {OL }}$	LOW Level Output Current				8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 3)		0		25	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 4)		0		20	MHz
t_{W}	Pulse Width (Note 3)	Clock HIGH	18			ns
		Preset LOW	15			
		Clear LOW	15			
$t_{\text {w }}$	Pulse Width (Note 4)	Clock HIGH	25			ns
		Preset LOW	20			
		Clear LOW	20			
t_{SU}	Setup Time (Note 3)(Note 5)	Data HIGH	$30 \uparrow$			ns
		Data LOW	$20 \uparrow$			
t_{SU}	Setup Time (Note 5)(Note 4)	Data HIGH	$35 \uparrow$			ns
		Data LOW	$25 \uparrow$			
t_{H}	Hold Time (Note 6)		$0 \uparrow$			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 4: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 5: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 7) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V} \end{aligned}$	J, $\overline{\mathrm{K}}$			0.1	mA
			Clock			0.1	
			Preset			0.2	
			Clear			0.2	
I_{IH}	HIGH Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	J, $\overline{\mathrm{K}}$			20	$\mu \mathrm{A}$
			Clock			20	
			Preset			40	
			Clear			40	
ILL	LOW Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	J, $\overline{\mathrm{K}}$			-0.4	mA
			Clock			-0.4	
			Preset			-0.8	
			Clear			-0.8	
los	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 8)		-20		-100	mA
I_{Cc}	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 9)			4	8	mA

Note 7: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 8: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.125 \mathrm{~V}$ with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.
Note 9 : $I_{C C}$ is measured with all outputs OPEN, with CLOCK grounded after setting the Q and \bar{Q} outputs HIGH in turn.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=\mathbf{2} \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	$\begin{aligned} & \text { Clock to } \\ & \text { Q or } \bar{Q} \end{aligned}$		25		35	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	$\begin{aligned} & \text { Clock to } \\ & Q \text { or } \bar{Q} \end{aligned}$		30		35	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		25		35	ns
${ }_{\text {t }}$	Propagation Delay Time HIGH-to-LOW Level Output	$\begin{aligned} & \hline \text { Clear } \\ & \text { to } Q \end{aligned}$		30		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Preset to Q		25		35	ns
$\overline{\mathrm{t}_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	$\begin{aligned} & \text { Preset } \\ & \text { to } \bar{Q} \end{aligned}$		30		35	ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
